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The Content

Recap of Bag-of-Words (universal baseline to study).

Second- and higher-order occurrence pooling.

Intuitive explanation: uncertainty in max-pooling.

Evaluations and comparisons to fisher vector encoding.

Region covariance descriptors.

Embedding into RKHS+Third-order Super-symmetric Tensor
descriptors.

Details of linearization process.

Sparse coding for TOSST descriptor.

Evaluations of TOSST on texture recognition.

Action recognition from 3D skeletons: Sequence and Dynamics
Compatibility Kernels.

Details of eigenvalue Power Normalisation.

Results on 3D skeleton action classification.

Natural Inner Product on Gaussians and Deep Architectures.
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Introduction

Bag-of-Words (First-order Approaches)

descriptors descriptor codingkeypoints

dictionary learning

feature pooling
pyramid
matching

the image
signature
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First-order Occurrence Pooling

The local descriptors x are extracted from an image and coded by f
that operates on columns.

Pooling g aggregates visual words from the mid-level features φ along
rows:

Let me remind the following three steps (without Pyramid Matching):

φn = f (xn,D), ∀n ∈ N (encode) (1)

ĥk = g
(
{φkn}n∈N

)
(pool) (2)

h = ĥ/‖ĥ‖2 (normalise) (3)
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Higher-order Occurrence Pooling

Note that Fisher Vector Encoding and Vector of Locally Aggregated
Tensors use the second-order statistics and Power Normalisation.

BoW can employ the second-order statistics with ↑⊗r , e.g.
↑⊗2φ = φφT :

Formally, this can be expressed in four steps:
φn = f (xn,D), ∀n ∈ N (encode) (4)

ψn = ⊗rφn (co-occurrences) (5)

ψn := u: (ψn) (vectorise) (6)

ĥk = g
(
{ψkn}n∈N

)
(pool) (7)

h = ĥ/‖ĥ‖2 (normalise) (8)
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Uncertainty in max-pooling
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Two linear slopes (LLC) - coding values
φ1 and φ2 for any 1≤x≤2.

Draw randomly descriptors from
this interval and apply max-pooling.

If we were to draw several times
(a) x =1.5, we would obtain: For (b) x1 =1, x2 =2, x3 =1.5, we get:

φ1 φ2

0.5 0.5
...

0.5 0.5

max 0.5 0.5

φ1 φ2

0 1
1 0

0.5 0.5

max 1 1

Position of the descriptor x =1.5 in (a) can be uniquely retrieved from

φ because f −1
(

[0.5, 0.5]T
)

= 1.5.

Position of x3 =1.5 in (b) is lost as f −1
(

[1, 1]T
)
∈ [1; 2].
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Uncertainty in max-pooling
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Two linear slopes (LLC) display coding values φ1 and φ2 for any
1≤x≤2.

Co-occurrences improve on the making effect, e.g. take co-occurrence
φ1φ2.

It results in a new maximum for x =1.5 - masking region u is now
split in two smaller regions u1 and u2.
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Second-order Occurrence Pooling: results

PascalVOC07, Flower102, Opponent SIFT, Sparse Coding
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(a) VOC07 (b) Flower102
K ∗ - length of the image signature.

r =2 - Second-order Occurrence Pooling
FV/VLAT - Fisher Kernels/Vector of Locally Aggregated Tensors.

Fusions: early - descriptor level, late - kernel level, bi-modal - tensor.

DoPM - a first-order method.
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TOSST Texture Descriptors

Region covariance descriptors (co-occurrences).

They typically use outer-product of low-level feature vectors
↑⊗2u = uuT .

Low-level features u (linear). Non-linear features are better.
We embed u into RKHS/linearise the RBF kernel by feature maps.
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TOSST Texture Descriptors

Non-linear co-occurrence descriptors.

Can we form more informative co-occurrences?
Yes, we extend ↑⊗2 to third-order outer product ↑⊗3.
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TOSST Texture Descriptors

Non-linear third-order descriptors
+eigenvalue Power Normalization (ePN).

Eigenvalue Power Normalisation prevents
correlated signal bursts. Imagine the largest
eigenvalue repesents the count of pattern of
brick and the 2nd represents the tree bark. Surely, the amount of
brick and bark patterns should not affect the prediction. But it does!

Higher-order models can be derived analytically.
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Higher-order Occurrence Pooling: derivation

Assume a kernel, e.g. RBF and its linearisation given by:
ker (u, ū) ≈

〈
φ, φ̄

〉
.

Assume the dot product
〈
φ, φ̄

〉
on a pair of features and polynomial

kernel:
〈
φ, φ̄

〉r
, r≥2.

Define a sum kernel between two sets of features U ={un}n∈N and
Ū ={ūn̄}n̄∈N̄ for two images/regions/sequences (anything you like):

Ker
(
U , Ū

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

ker (un, ūn̄)r

≈ 1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
φn, φ̄n̄

〉r
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

(
K∑

k=1

φknφ̄kn̄

)r

(9)

P. Koniusz (NICTA) Beyond Covariance: Higher-order Tensor Descriptors and Applications in Computer VisionJuly 26, 2016 12 / 27



Higher-order Occurrence Pooling: derivation

The rightmost summation can be re-expressed as a dot product of
two outer-products of order r on φ:(
K∑

k=1

φknφ̄kn̄

)r

=
K∑

k(1)=1

...

K∑
k(r)=1

φk(1) φ̄k(1) · ... · φk(r) φ̄k(r) =
〈
⊗rφn,⊗r φ̄n̄

〉
F

(10)
Now, the problem is further simplified:

Ker
(
U , Ū

)
≈ Ker ′

(
Φ, Φ̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
⊗rφn,⊗r φ̄n̄

〉
F

=

〈
1

|N |

∑
n∈N
⊗rφn,

1

|N̄ |
∑
n̄∈N̄

⊗r φ̄n̄

〉
F

=

〈
Avg
n∈N

(
⊗r φn

)
,Avg
n̄∈N̄

(
⊗r φ̄n̄

)〉
F

We introduce operator G (similarity for matrices/tensors, e.g. ePN):

Ker∗
(
Φ, Φ̄

)
=

〈
G
( 1

|N |

∑
n∈N
⊗rφn

)
,G
( 1

|N̄ |
∑
n̄∈N̄

⊗r φ̄n̄

)〉
F

(11)
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Sparse Coding for Third-order Tensor Descriptors (TSC)

However, X is cubic w.r.t. size of features.
We propose Sparse Coding for Third-order Tensor Descriptors.

We can learn a dictionary to encode TOSST:

arg min
B1,...,BK

α1,...,αN

N∑
n=1

∥∥∥∥∥X n −
K∑

k=1

Bkα
n
k

∥∥∥∥∥
2

F

+ λ ‖αn‖1. (12)

However, B have three modes (overparametrised model), so we learn
instead low-rank dictionary:

arg min
B1,...,BK
b1,...,bK

α1,...,αN

N∑
n=1

∥∥∥∥∥X n −
K∑

k=1

(Bk ↑⊗bk)αn
k

∥∥∥∥∥
2

F

+ λ ‖αn‖1. (13)

Resulting sparse codes α are pooled and used for SVM training.
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Sparse Coding for Third-order Tensor Descriptors (TSC)

We use training set of TOSST descriptors X 1, ...,XN .

We learn low-rank dictionary atoms B1 ↑⊗b1, ...,BK ↑⊗bK

(outer product of matrices with vectors).

They approximate full-rank tensor atoms B1, ...,BK .

Overparametrized,
high complexity

Fewer parameters,
easier to learn
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Results

Brodatz textures; 99.9% accuracy (the state of the art);
others score ∼ 98.72%.

UIUC materials recognition; 58.0% accuracy.

PASCAL VOC07 descriptor compression:
61.2% mAP (25K signature) vs. 61.3% mAP (176K signature).
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Action Recognition from 3D Skeletons

Sequence Compatibility Kernel

Components φ(x), φ(y), φ(z), φ( t
T ) denoted as

(◦, �, O, +).

V captures all triplets: (◦�O), (◦�+), (◦O+), (�O+).

ePN evens out counts of these co-occurrences.

Tensors X are the samples for training SVM.
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Action Recognition from 3D Skeletons

Dynamics Compatibility Kernel

A B
C D

1 9

12 15

Enumerate all unique joint displacement vectors xit−xjt′,i≤j ,t≤t′ .

Embed displacements into RKHS and linearise to obtain φ(xit−xjt′).

Embed start-/end-times into RKHS, linearise to obtain φ( t
T ), φ( t′

T ).

Take outer products φ(xit−xjt′)φ( t
T ) ↑⊗φ( t′

T ), aggregate+ePN.
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Eigenvalue Power Normalisation

Four simple steps in MATLAB:

(E; A1, ...,Ar ) = HOSVD(V) (14)

Ê = Sgn(E) |E|γ (15)

V̂ = ((Ê ⊗1A1) ...)⊗rAr (16)

X = G(V) = Sgn(V̂) |V̂ |γ∗ (17)

Perform Higher Order SVD (equivalent of SVD for more than 2
modes).

Obtain the core tensor E (equivalent of singular values).

Power-normalise this spectrum (values E can be negative).

Assemble back tensor, if needed, perform additionally standard PN.
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Action Recognition from 3D Skeletons: results

Eigenvalue Power Normalisation w.r.t. γ:
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Action Recognition from 3D Skeletons: results

Florence3D-Action (state-of-the-art):

SCK DCK SCK+DCK
accuracy 92.98% 93.03% 92.77% 95.47%

size 26565 9450 16920 43485

Bag-of-Poses 82.00% SE(3) 90.88%

Using fewer less noisy key-joints may be better (SCK):

joint config.
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Action Recognition from 3D Skeletons: results

UTKinect-Action (state-of-the-art):

SCK DCK SCK+DCK
accuracy 96.08% 97.69% 98.39%

size 40480 16920 57400

3D joints hist. 90.92% SE(3) 97.08%

MSR-Action3D:
SCK+DCK SE(3)

accuracy, standard protocol 92.7% 89.48%
accuracy, specific classes/subjectss 96% 92.46%

size 57400 -
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Natural Inner Product on Gaussians

Gaussian kernel between u ∈ Rd ′ and ū ∈ Rd ′ can be simply rewritten
as:

Gσ(u−ū) = e−‖u−ū‖2
2/2σ2

=

(
2

πσ2

) d′
2
∫

ζ∈Rd′

Gσ/
√

2(u−ζ)Gσ/
√

2(ū−ζ) dζ.

(18)

Finite approximation by ζ1, ..., ζZ pivots is given by:

φ(u) =
[
Gσ/
√

2(u− ζ1), ...,Gσ/
√

2(u− ζZ )
]T

, (19)

and Gσ(u−ū) ≈
〈

φ(u)

‖φ(u)‖2

,
φ(ū)

‖φ(ū)‖2

〉
. (20)

As few as 6 pivots yield ≤0.8% approximation error.
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Action Recognition from 3D Skeletons: results

Florence3D-Action w.r.t. kernel radii and pivot numbers:
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Not too sensitive to parameter variations.

More pivots provide better RBF approximation but SVM has to learn
more parameters (overfitting).
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Extensions to Deep Architectures

Convolutional Kernel Networks: future talk.

The simplest extension - instead of Fisher Vectors apply
HOSVD+ePN to aggregate over multiple CNN-based sub-patches.
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Conclusions

It may look difficult, but it requires few easy steps only in practice:
A. Extract your favourite features.
B. Embed them into RKHS/linearise.
C. Form outer products of desired order.
D. Aggregate and apply ePN.
E. Train SVM (or any favourite classifier).

Interested in any related ideas? Talk to me to see if we can
collaborate :-) Ideas take know-how, time and people to develop them.
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Thank You
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